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The one-dimensional overdamped Brownian motion of a dimer consisting of two harmonically interacting
components is considered. Both components are coupled to the same heat bath and feel the same spatially
periodic symmetric potential, whose amplitude is modulated periodically in time. The friction coefficients may
differ between dimer components, thus breaking the dynamical symmetry of the system. In the absence of any
external bias, a ratchet effect �directed transport� arises generically. Two accurate approximations for the
dimer’s velocity and diffusion coefficient are obtained for weak and strong couplings. The velocity of the
system can be maximized for each direction by adding an optimal amount of noise and by tuning the driving
frequency to an optimal value. Furthermore, there exist two optimal coupling strengths at which the velocity is
the largest.
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I. INTRODUCTION

Fluctuation and dissipation phenomena are of paramount
importance with regard to developing and investigating the-
oretical models of molecular motors �1,2�. The key mecha-
nism of these models that enables the transformation of iso-
tropic thermal noise into average unidirectional motion is the
ratchet effect �1–3�. For over a decade it is known experi-
mentally that the internal properties of motor molecules play,
if not the decisive, at least a prominent role in the emergence
of directed motion in living organisms �4�. These internal
properties, their symmetry-breaking and transport generating
effects in spite of originally symmetric environments, are
addressed by numerous theoretical studies of coupled par-
ticle chains �5�, arrays �6�, and dimers �7–11�, to name but a
few. Especially dimers are suited to model such systems be-
cause of their internal degree of freedom and their simplicity.

A subclass of systems with internally broken symmetry
consists of ratchet systems based on inhomogeneous friction.
In underdamped systems, friction applied to the internal de-
gree of freedom can lead to self-propulsion �12�, even in the
absence of an external potential �13�. A macroscopic me-
chanical device with frictional asymmetry was experimen-
tally realized converting fluctuating motion �actual sound
waves� into unidirectional rotation �14�. Another way of en-
forced frictional inhomogeneity is a space dependent friction
coefficient, both for overdamped and underdamped ratchets
�15–17�. In nonratcheting systems, sliding friction of dimers
on periodic substrates reveals nonlinear velocity dependence
and a striking periodic variation with the ratio of dimer
length and substrate period �18–20�.

In this paper, we introduce a simple one-dimensional
model consisting of two elastically coupled Brownian par-
ticles with independent friction coefficients in a symmetric
flashing potential. This kind of friction asymmetry is differ-
ent from the two-state systems with protein friction modeling
a molecular motor in �21–23�, where fluctuations are recti-
fied by means of switching between states of high and low
friction in order to account for cyclical attachment to the
track �e.g., cell filaments�. In our model, the friction coeffi-
cients are neither time nor space dependent but fixed quan-
tities generating a nonzero average velocity. We show that
the dimer velocity can be maximized with respect to the

noise intensity and driving frequency, and that it is maximal
at some optimal coupling strength.

II. MODEL

The total energy U of the dimer consists of two parts: a
flashing potential representing the interaction of each dimer
component with the surface plus the bond energy of the
dimer,

U�x1,x2,t� = �V�x1� + V�x2��f�t� +
�

2
�x2 − x1 − l0�2. �1�

The surface interaction V is a sinusoidal function with barrier
height �V and spatial period L,

V�xi� = �1 − cos�2�xi/L���V/2. �2�

Both contributions, V�x1� and V�x2�, are synchronously and
periodically switched on and off by a rectangular signal
f�t�= f�t+�� of periodicity �=�on+�off. On phases of duration
�on and off phases of duration �off alternate such that f�t�
=1 for n�� t�n�+�on, and f�t�=0 for n�+�on� t� �n+1��,
where n�Z. The coupling interaction is assumed to be elas-
tic, with spring constant � and rest length l0, meaning that
there is no internal force acting between the components if
x2−x1= l0.

The dynamics of the dimer is modeled as overdamped
Brownian motion at temperature T, yielding two coupled
equations of motion,

�iẋi�t� = − �U�x1,x2,t�/�xi + �2�ikBT	i�t� , �3�

for i� �1,2�. The �i are the friction coefficients of the re-
spective dimer components, kB is the Boltzmann constant,
and the 	i�t� are Gaussian white noises with �	i�t�	=0 and
�	i�t�	 j�s�	=
ij
�t−s�, for i , j� �1,2�. The ratio of the fric-
tion coefficients can be merged into a dimensionless asym-
metry parameter �, allowing us to identify

� ª �1 and � ª �2/�1 �4�

throughout the rest of the text. For definiteness, we will fo-
cus on the case ��1. In other words, x1 is the “slow” and x2
is the “fast” component of the dimer.
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The quantities of main interest to us are the average dimer
velocity

v = lim
t→�

�xi�t�	
t

, �5�

and the diffusion coefficient

D = lim
t→�

��xi�t��2	 − �xi�t�	2

2t
. �6�

Focusing on �
0, both quantities are independent of the
index i.

III. ORIGIN OF THE RATCHET EFFECT

Before deriving the analytical approximations for the cur-
rent and diffusion coefficient of the system described in the
previous section, we would like to qualitatively discuss the
basic mechanisms leading to the onset of a spontaneous cur-
rent. The origin of the ratchet effect can be understood from
Fig. 1, depicting various stages of the dimer’s motion.

In each on phase of driving, the dimer may be trapped
either �A� near the minimum of the potential V�x�, or �B�
near its maximum. In case A, the dimer is compressed so
that, immediately after the potential V�x� is switched off, the
distance between the dimer components will begin to in-
crease toward the equilibrium value l0. This relaxation will
proceed predominantly via the motion of that component,
whose friction coefficient is the smaller. As a result, the geo-
metrical center of the dimer will more likely be displaced in
the direction of that component in the end of each off phase
so that the overall current direction in Fig. 1�A� will be to the
right. Turning to case B, the dimer is initially stretched over
one of the maxima of the potential V�x�. Immediately after
this potential is switched off, the dimer length will relax
toward the equilibrium value predominantly via the motion
of the component with the smaller friction coefficient while

the other component will move much more slowly. As a
result, the geometrical center will, on average, be displaced
to the left in the end of each off phase, resulting in the
overall current in the negative direction.

Depending on the rest length and stiffness of the dimer, as
well as on the values of the friction coefficient of its compo-
nents, one of these two scenarios will dominate. At specific
values of the system’s parameters, both mechanisms can
even mutually cancel, resulting in zero net current.

IV. ANALYTICAL DERIVATION OF AVERAGE DIMER
VELOCITY AND DIFFUSION COEFFICIENT

The key to a description of the dimer dynamics is a treat-
ment in terms of transition probabilities from distinct poten-
tial wells to neighboring wells for the various relevant dimer
configurations �e.g., stretched or compressed�. However, at a
critical coupling strength

�crit ª V��0� = 2�2�V/L2, �7�

the distinctness of potential minima is severely disturbed by
antagonistic superposition of equally strong sinusoidal and
elastic parts. It is only for � well below or above �crit that we
were able to deduce applicable schemes leading to analytical
approximations for weak and strong couplings. This can be
expressed through the dimensionless parameter

� ª �/�crit, �8�

thereby referring to ��1 as weak-coupling regime, and �
�1 as strong-coupling regime.

In order to gain analytical results, we need to make three
assumptions. The first of them concerns the barrier height.
While the periodic driving f�t� of the surface interaction is
necessary to drive the dimer out of equilibrium, its amplitude
�V must be large enough to substantially “freeze” the diffu-
sion in the on phase. Escapes from potential minima must be
rare events in order to neglect them completely within an
analytical approximation. Therefore, we require

�V � kBT . �9�

This also guarantees a sharply peaked equilibrium probabil-
ity distribution of the dimer components whenever the driv-
ing is active, f�t�=1.

Our second assumption is that �on, the duration of the
surface potential being switched on, must be substantially
larger than the relaxation time �on

rel of the slower component
x1,

�on � �on
rel. �10�

Otherwise, the dimer would not reach a quasistationary equi-
librium distribution during the on phase. This relaxation time
is mainly governed by the curvature of the total potential U
at its relative minima. Since the maximal curvature of the
potential V equals to �crit, the relaxation time in the on phase
is roughly �on

rel
� / ��+�crit�.
Our third assumption requires that � is not too small since

the spring constant determines the relaxation time �off
rel

=�� / �1+��� of the dimer length in the off phase �see be-
low�. For

FIG. 1. Schematic representation of two different dimer equilib-
rium configurations during on phases �dimer plus sinusoidal poten-
tial, upper part� and their subsequent deterministic relaxation �off
phase, lower part�. Dimer constituents are depicted as black �x1�
and white �x2� balls connected by a spring. For each configuration,
a typical relaxation scenario of the dimer is shown for low � values,
i.e., x2 moves faster than x1. The upper horizontal line represents
the initial distribution when the potential V is switched off, the
lower line exemplifies the equilibrated spring. The net displacement
of the dimer’s geometrical center is the origin of the ratchet effect.
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�off � �off
rel , �11�

a lower bound of � is given by ���� / ��1+���off� to ensure
a stationary equilibrium distribution of the relative coordi-
nate at the end of the off phase.

A. Weak-coupling approximation

Because of conditions �9� and �10�, at the end of each on
phase, f�t�=1, the system finds itself in a sharply peaked
equilibrium distribution. Both dimer components will be lo-
calized close to minima of V�xi�, say, x1�kL and x2��k
+m�L, where k ,m�Z. Further, we expect both dimer com-
ponents to be localized near the positions where �U /�x1
=�U /�x2=0, whence we can directly deduce sin�2�x1

eq /L�
=−sin�2�x2

eq /L� with x1
eq+x2

eq= �2k+m�L. This means that
any equilibrium distribution is completely described by the
pair �k ,m�. By a harmonic approximation of U about x1
=kL and using x2

eq= �2k+m�L−x1
eq, the equilibrium positions

can be calculated approximately for small � and not too large
�m� as

x1
eq = kL + ��mL − l0�/�1 + 2�� , �12�

x2
eq = �k + m�L − ��mL − l0�/�1 + 2�� . �13�

In the off phase, f�t�=0, equation of motion �3� can be
decoupled by introducing a dynamically weighted central co-
ordinate,

X = �x1 + �x2�/�1 + �� , �14�

and a relative coordinate,

Y = x2 − x1 − l0. �15�

We find for the central coordinate

�1 + ���Ẋ = �2�1 + ���kBT	X�t� , �16�

which is a Wiener process, and for the relative coordinate

��Ẏ/�1 + �� = − �Y + �2��kBT/�1 + ��	Y�t� , �17�

being an Ornstein-Uhlenbeck �OU� process. Here, 	X�t� and
	Y�t� are once again independent delta-correlated Gaussian
noises. For initial central coordinate Xeq= �x1

eq+�x2
eq� / �1+��,

see Eqs. �12�–�14�, the Wiener process evolves to the prob-
ability density

W1�X� = CX exp
−
�1 + ����X − Xeq�2

4kBT�off
� �18�

in the end of the off phase, where CX is a normalization
constant. Because of condition �11�, the OU process ap-
proaches its long-time asymptotics

W2�Y� = CY exp�− �Y2/2kBT� , �19�

with a normalization constant CY. The joint probability dis-
tribution for the original dimer components follows by a
backward transformation,

W�x1,x2� =� dX

X −
x1 + �x2

1 + �
�W1�X�

�� dY
�Y − x2 + x1 + l0�W2�Y�

= W1
 x1 + �x2

1 + �
�W2�x2 − x1 − l0� . �20�

The pair distribution function W�x1 ,x2� is a valid approxima-
tion at precisely that moment in time when the potential
V�xi� is switched on again.

Any initial dimer configuration �j ,m� can naturally be
mapped onto �0,m� by a shift of the coordinate axis by j
multiples of L. From there on, the transition probability into
any final configuration �k , l� is given by an integral of the
pair distribution function,

P�0,m�→�k,l� = �
a−

a+

dx1�
b−�x1�

b+�x1�
dx2W�x1,x2� . �21�

The integration limits, a� and b��x1�, must be chosen so as
to match the basins of attraction of each minimum, which is
a precarious matter for moderately weak coupling. A naive
ansatz would be the following: since �Y	=0, the elastic part
of the potential U can be averaged out and the remaining
surface potential V�xi� leads to a�= �k�

1
2 �L and b�= �k

+ l�
1
2 �L. But this rather loose approximation is limited to

very small � and thus is of little use.
Nevertheless, refined approximations of the limits can be

established asymptotically both for �→0 and �→1. In both
cases, we identify b��x1� with the instantaneous local maxi-
mum of U�x1 ,x2� with respect to the variable x2 for a given
value of x1. Since, in most cases, ��1, the relaxation of the
component x2 then will start toward the accompanying equi-
librium closest to �k+ l�L. Therefore, we determine b��x1� by
expanding �U�x1 ,x2� /�x2 to first order about x2��k
+ l�

1
2 �L and setting it equal to zero, yielding

b��x1� =

k + l �

1

2
�L − ��x1 + l0�

1 − �
. �22�

In a similar manner we wish to determine an effective

one-particle potential Ũ�x1�=U�x1 , x̃2���� allowing us to de-
duce the basin of attraction of particle x1. This must not
depend on component x2 anymore because the integration
over x2 is already completed. Instead of that we introduce
a parameter x̃2��� having different meanings in both limits
�→0 and �→1. In the first case ��→0�, component x2
becomes frictionless and will immediately relax to its ac-
companying equilibrium. This adiabatically accompanying
equilibrium is found to be

x̃2�� = 0� =
�k + l�L + ��x1 + l0�

1 + �
�23�

by expanding �U�x1 ,x2� /�x2 to first order about x2��k
+ l�L and setting it equal to zero. In the second case ��
→1�, the relaxation dynamics of both components proceed
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on the same time scale. After integrating out the variable x2,
the best estimate we have for x̃2 is its expectation value in
case of x1 being close to one of its own relative potential
maxima at �k�

1
2 �L. This expectation value is easily calcu-

lated to be

x̃2
��� = 1� =� � x2
�x1 − 
k �

1

2
�L�W�x1,x2�dx1dx2,

�24�

where the superscript � indicates which sign is to be taken at
the upper �+� or the lower �−� integration limit.

Now, estimates for the instantaneous boundaries of the
basins of attraction for component x1, denoted by a�

�, are

obtained from an expansion of �Ũ�x1� /�x1 at x1��k�
1
2 �L.

By using x̃2��=0� within this expansion, we find

a0
� = 
k �

1

2
�L + ��
− l �

1

2
�L + l0� , �25�

and with x̃2
���=1� that

a1
� = a0

� + ���k + l�L − x̃2
��/�1 + �� . �26�

For intermediate �, we choose a linear interpolation for the
whole range 0���1 and obtain

a� = a0
� + ��a1

� − a0
�� . �27�

With these boundaries, Eq. �21� becomes applicable to all
values of � with sufficient accuracy.

At the beginning of a new cycle of driving, the final con-
figuration �k , l� will be mapped onto �0,m�, as before. There-
fore, we are able to deduce the transition probabilities from
initial to final relative distance between components 1 and 2
�i.e., Pm→l� via the summation

Pm→l = �
k=−�

�

P�0,m�→�k,l�. �28�

These transition probabilities correspond to some stationary
nontrivial probability distribution Pm with �Pm=1 since the
matrix elements Pm→l vanish exponentially for large l2 and
m2. Thus, a formal solution of

�
m=−�

�

�Pm→l − 
ml�Pm = 0, �29�

where 
ml is the Kronecker symbol, determines Pm, which
are the probabilities of �0,m� states at the beginning of each
driving cycle.

For any finite �, the average velocity of the dimer must be
equal to each �ẋi	 according to Eq. �5�, which by now can be
calculated for component x1 from the transition probabilities
P�0,m�→�k,l�. As we are interested in the average shift of x1
alone, we can first sum over all final l configurations,
�lP�0,m�→�k,l�. The next step is to sum over all initial m con-
figurations, where the previously determined probabilities Pm
enter. Then, after one period of duration �, each possible step
width kL may occur with the assigned probability
�l,mPmP�0,m�→�k,l�. Finally, the average dimer velocity is ob-
tained by means of a threefold summation,

v =
L

�
�

k

k�
m

Pm�
l

P�0,m�→�k,l�, �30�

where all sums run from −� to �. The diffusion coefficient
according to Eq. �6� is obtained from the transition probabili-
ties P�0,m�→�k,l� in an analogous manner,

D =
L2

2�
�

k

k2�
m

Pm�
l

P�0,m�→�k,l� −
v2�

2
. �31�

B. Strong-coupling approximation

In the limit of strong coupling, the potential landscape is
simplified significantly. In the weak-coupling case consid-
ered before, there was a broad variety of “frozen” dimer
configurations �0,m� in each on phase, whereas for overcriti-
cal �, there is �in most cases� but a unique equilibrium con-
figuration left. A straightforward but somewhat tedious
analysis of the relaxation dynamics on a short time scale
leads, for a given � and restricting the rest length l0 to the
interval �−L /2,L /2�, to the following approximate upper
bound:

�l0� � �L/��arccos��4�2 + 2 − 2�� . �32�

Below this bound, any stretched configuration �i.e., dimer
components separated by a potential maximum� is always
unstable, thus leaving a single stable minimum for any one
given xi.

A further simplification arises from neglecting variations
in the relative coordinate Y because of the decreasing width
of its distribution function. Since small deviations from the
center of this distribution are completely symmetric, their
effect cancels in first-order approximation. Therefore it suf-
fices to derive a single parameter transition probability
P�0,0�→�k,0� for the dimer to move by kL as a whole solely
from the central coordinate distribution function W1�X�, Eq.
�18�.

The equilibrium distribution can now be derived by ex-
panding U with respect to x1, not about kL as before but
about kL− l0 /2 since this is the correct value in the limit
�→�,

x1
eq = kL −

l0

2
+

L

2�

sin��l0/L�
2� + cos��l0/L�

, �33�

x2
eq = 2kL − x1

eq, �34�

where ��1 �overcritical coupling�. The equilibrium central
coordinate that follows from these new values still equals
Xeq= �x1

eq+�x2
eq� / �1+��, yielding for the transition probabil-

ity the result

P�0,0�→�k,0� = �
c−

c+

dx1�
−�

�

dX

X − x1 −
�l0

1 + �
�W1�X� .

�35�

Again, we determine the limits of integration, c+ and c−,
from the two limiting cases of the asymmetry parameter �.
For �→1, the dimer will settle into that potential well to
which its �geometrical� center is the closest. Since we as-
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sume Y �0, we have X�x1+ l0 /2. The dimer therefore will
relax to the minimum at kL for c1

−�x1�c1
+, where

c1
� = 
k �

1

2
�L − l0/2. �36�

In the opposite case �→0, an expansion of U about x1

= �k�
1
2 �L− l0 /2 and using x1+x2= �k�

1
2 �L leads to a basin

of attraction of minimum kL between

c0
� = c1

� +
L

2�

sin��l0/L�
2� − cos��l0/L�

. �37�

As before, we choose a linear interpolation for 0���1,

c� = c0
� + ��c1

� − c0
�� . �38�

Average dimer velocity and diffusion coefficient follow im-
mediately by adjusting Eqs. �30� and �31�, yielding

v =
L

�
�

k

kP�0,0�→�k,0� �39�

and

D =
L2

2�
�

k

k2P�0,0�→�k,0� −
v2�

2
. �40�

V. RESULTS AND DISCUSSION

To verify the above predictions we compared velocity and
diffusion coefficient from Eqs. �30� and �31� in the case of
weak coupling, or Eqs. �39� and �40� in the case of strong
coupling, to numerical simulations of the original Langevin
Eq. �3�. Some parameter values were kept fixed throughout
all simulations and scaled to unity: thermal energy kBT, fric-
tion coefficient �, and corrugation length L. The barrier
height was fixed at �V=100kBT=100 in order to satisfy as-
sumption �9�. Also, the duty cycle stayed unaltered, �on /�
=1 /2, dividing the time into equally long on and off phases.
Each data point resulted from averaging over 100 trajectories
with more than 15 000 duty cycles for undercritical and 1500
for overcritical coupling.

A. Dependence on dimer length

The symmetries of the total energy U naturally depend on
the dimer length l0 through the properties of the elastic part
of the potential. Clearly, any U and l0 dependent quantity,
e.g., average dimer velocity, must be affected by those fun-
damental properties, and we shall discuss these effects
briefly. Since the interplay of surface and elastic contribu-
tions to total energy U can only be seen during the on phases,
f�t�=1, we assume time t to have an appropriate constant
value. Therefore, within the subsequent discussion so far t
dependence of the potential U=U�x1 ,x2 ; t� will be aban-
doned in favor of its dependence on l0, i.e., from now on
U=U�x1 ,x2 ; l0�.

There are three different symmetry transformations appli-
cable to the spatial variables of U: translational invariance,
U�x1 ,x2 ; l0�=U�x1+nL ,x2+ml ; l0−nL+mL�, where n ,m�Z,

inversion symmetry, U�x1 ,x2 ; l0�=U�−x1 ,−x2 ;−l0�, and ex-
change symmetry, U�x1 ,x2 ; l0�=U�x2 ,x1 ;−l0�. A change
from l0 to −l0 can be understood as inversion of the dimer’s
orientation. Necessarily, if the average velocity was nonzero
before reorientation, it must be reversed, v�l0�=−v�−l0�. On
the one hand, this immediately implies nodes of v�l0� at all
integer multiples of L due to translation symmetry. On the
other hand, translational invariance makes the average veloc-
ity a periodic function, v�l0�=v�l0+kL�, where k�Z. Ac-
cordingly, we find v�L /2�=v�−L /2�=−v�L /2�, which im-
plies nodes of v�l0� at all half integer multiples of L.
Therefore, if v is not constantly zero, it must change its sign
in each node at any integer multiple of half the corrugation
length, L /2. The direction of the average current depends on
several parameters and will be discussed in the following
sections.

Besides the above mentioned symmetry properties of
v�l0�, Fig. 2 includes variations in a further parameter, the
driving frequency �=2� /�. Values of � were chosen from a
range well within the bounds imposed by Eqs. �10� and �11�.
They yield a succession of increasing amplitudes of v, start-
ing from �=50 and ending at �=100. The abscissa repre-
sents the dimer length l0 and ranges from −L /2 to L /2, thus
covering a single full period of the odd L-periodic function
v�l0�. Nodes with change in sign appear at each integer mul-
tiple of L /2; see explanation above. The absolute value of v
exhibits maxima at �l0 /L��0.3. The agreement of theory and
simulation within statistical uncertainty is very good for all
values depicted.

B. Dependence on friction

The linear interpolation �Eq. �27�� yields accurate results,
as can be seen from Fig. 3. Therein, the rest length is a
quarter of the spatial period, l0=L /4, so that velocity v�l0� is
potentially large. For �=1, which means �1=�2, the equa-
tions of motion become completely symmetric and the aver-
age current must be zero. For decreasing �, the average ve-

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.4 -0.2 0 0.2 0.4

v

l0

ω = 50
ω = 60
ω = 75
ω = 100

FIG. 2. Average dimer velocity v vs rest length l0 at four differ-
ent values of driving frequency �=50 �circles and solid line�, 60
�downward triangles and long-dashed line�, 75 �diamonds and me-
dium dashed line�, and 100 �upward triangles and short-dashed
line�, where kBT=�=L=1, �=0.3, �V=100, and �=50. Data
points are taken from simulation data while lines show the corre-
sponding theoretical predictions.

RATCHET EFFECT OF A DIMER WITH BROKEN… PHYSICAL REVIEW E 79, 031114 �2009�

031114-5



locity increases until it reaches a maximal absolute value at
��0.3. Ongoing decrease in � leads to a current reversal at
��0.07 and finally to some finite current in the opposite
direction for �→0.

The qualitative behavior of the velocity v can be ex-
plained by two antagonistic effects. The first effect depends
on the off-phase equilibrium position of the dimer in the
deterministic case; see Fig. 1. At �=1, the whole situation is
symmetric with respect to the surface potential. A decrease in
� leads to a shift in the final position either to the right �A� or
to the left �B�, as explained above. For a dimer with rest
length L /4, as it is the case in Fig. 3, the shift in B is sub-
stantially larger than in A, yielding a negative average veloc-
ity.

The second effect depends on the shift in the boundaries
of integration, i.e., the friction dependent change in the ba-
sins of attraction for each dimer component. From simple
geometrical reasoning one can deduce that, with �=1 and
l0=L /4, the dimer approximately will end up in A with prob-
ability 3/4 and in B with probability 1/4. For ��1, the prob-
ability to arrive in a B state is reduced because the fast com-
ponent x2 may sometimes pull the slow component x1 over
the top of a potential barrier. This results in a drastic en-
hancement of the transition probability from any A state into
the next A state to the right instead of the B state lying in
between. Since the B states have a high transition probability
to the left A state, jumps to the left are further decreased for
low �. Eventually, with �→0, the second effect becomes
dominating and the average velocity turns to positive values.

C. Dependence on temperature

The vanishing velocity at both extremal temperature lim-
its, see Fig. 4, is readily explained. At zero temperature, the
only possible motion is the purely deterministic motion be-
tween equilibrium positions of on and off phases; see Fig. 1.
This oscillatory motion clearly is bound to a fixed position,
generating no net current. At very high temperature, the
probability distribution functions of both dimer components
become extremely flat. Furthermore, the influence of the sur-

face potential becomes negligible as compared to thermal
energy so that the transport generating influence of the driv-
ing is substantially reduced.

Everything being of physical interest, e.g., a ratchet effect,
is to be found in the intermediate temperature regime about
0.1�kBT�100. The pronounced maximum of negative ve-
locity at kBT�1 and the less prominent maximum of posi-
tive velocity at kBT�4 can be explained similarly to the
preceding section. When temperature rises from zero, the
width of any final off-phase probability distribution grows
and transitions into neighboring states become more prob-
able. As long as temperature is low, those widths are rather
narrow meaning that any dimer in a B state will proceed to
the left A state with high probability. At higher temperature,
the transition from a B state to the A state on the right be-
comes more and more probable, finally leading to a current
reversal. Further reversals at still higher temperature could
not be observed because assumption �9� is no longer valid.

With regard to the diffusion coefficient, the same tem-
perature ranges reveal different features of the dimer dynam-
ics. For T→0, the dimer motion becomes subdiffusive since
the probability to leave the basin of attraction of a specific
state rapidly approaches zero. The free diffusion coefficient
of the same dimer but without driving, i.e., with spatially
constant surface potential, is Dfree=kBT / �1+���, which is
the diffusion coefficient of Wiener process �18�. One half of
Dfree is the respective free diffusion coefficient of a dimer
that is “frozen” in place according to the same duty cycle
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FIG. 3. Dimer velocity v vs asymmetry parameter �, where �
=kBT=L=1, l0=0.25, �V=�=100, and �=50. For �=1, symmetry
is restored and the average current is zero; the limit �→0 means
vanishing friction of dimer component x2 and gives rise to a current
reversal.
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FIG. 4. Dimer velocity v and diffusion coefficient D vs thermal
energy kBT, where �=kBT=L=1, �=0.3, l0=0.25, �V=�=100,
and �=50. Upper graph: The velocity shows two extremal values of
opposite sign. Lower graph: The coefficient of free diffusion Dfree,
i.e., dimer diffusion without driving, and Dfree /2 are depicted in
dashed lines, as well.
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�on /�=1 /2 for half of the time but without being relocated to
discrete rest positions. At kBT�1, the diffusion coefficient
grows larger than Dfree /2, and at kBT�4 it has grown dis-
tinctly beyond this value, marking a local maximum of
D /Dfree. This corresponds to the appearance of those transi-
tions that lead directly from an A state to the neighboring A
state instead of looping between A and B states. Since this
happens while transitions in opposite direction are still im-
portant, an ensemble of dimers is tuned toward an optimal
mixing. At higher temperatures �5�kBT�30� this advantage
is counterbalanced by the enhancement of transitions from B
to the right A state, as explained above, and the diffusion
coefficient declines asymptotically to Dfree /2. Finally, for
kBT��V, the diffusion becomes quasifree and the coeffi-
cient D approaches Dfree.

D. Dependence on driving frequency

The frequency dependence is related to the temperature
dependence of the dimer dynamics via Eq. �18� which has
the most decisive influence onto the final result. Therein,
thermal energy and duration of the off phase are multiplied
to yield the width of the final probability distribution. For
duty cycle 1/2, this equals to the ratio of thermal energy and
driving frequency according to kBT�on=�kBT /�. Therefore,
one may expect similar results for variation in � at fixed kBT
as one had for variation in 1 /kBT at fixed �, as long as the
assumptions concerning times �on and �off are respected.

Regarding velocity, this connection is self-evident from
Fig. 5. Starting at low frequency, velocity grows from zero to
a first positive maximal value, corresponding to the positive
velocity maximum in Fig. 4. Further increase in frequency �
reverts the sign of the net current to a much larger negative
velocity, as is the case for decreasing temperature. At even
higher frequency, theory disagrees with simulation because
assumptions �10� and �11� concerning the relaxation times of
dimer components are no longer complied with. The appar-
ent prediction of a second node in the velocity relation there-
fore lies outside the range of validity; nevertheless the as-
ymptotical decrease in velocity for very high frequency is
correct.

The similarity regarding the diffusion coefficient is not so
complete because the barrier surmounting effect of very high
temperature can only be imitated by such a low frequency
that the corresponding large driving period � entering the
denominator of Eq. �31� cancels everything. Therefore a
transition from an asymptotic Dfree /2 to a Dfree regime for
�→0 cannot be observed. Instead, in the low-frequency
limit analogous to moderately high temperature �5�kBT
�30�, there is a saturation of the diffusion coefficient at
Dfree /2. Increasing the frequency leads to a clear maximum
of diffusivity, above Dfree /2 but still well below Dfree. The
explanation for this maximum of D /Dfree was given in Sec.
V C. This maximum of the diffusion coefficient coincides
with the sign reversal of the net current, as well. At high
frequency, analogous to low temperature, the time �off is not
long enough to allow for diffusive escape from one of the
discrete “rest” states to which the dimer is periodically con-
fined by the surface potential.

E. Dependence on elasticity

As we pointed out in the previous section, the approxima-
tion scheme we applied to the dimer dynamics prevents us
from any proposition concerning ���crit. This particular
shortcoming obviously appears in Fig. 6, where there is very
good agreement between theory and simulation data in the
weak-coupling and the strong-coupling regimes but not at
critical coupling where the average dimer velocity is maxi-
mized. At this point, both approximations fail completely.

The reasons for the asymptotic behavior of v for weak
and strong couplings are clear. In the uncoupled limit ��
→0�, the dimer resolves into two independent particles, each
in a symmetric potential that does not yet allow for unidirec-
tional motion. Neither is there any net transport possible in
the rigid coupling limit ��→�� because in this case the dy-
namics can be reduced to the Brownian motion of a single
particle �e.g., center of mass� in a symmetric periodic poten-
tial. The small positive velocity visible at ��10 is a mere
artifact. It occurs because assumption �11� concerning the
relaxation time in the off phase is violated. If it was desirable
to remedy this situation, the stationary probability distribu-
tion W�Y� could be replaced by its nonstationary representa-
tion.

The internal degree of freedom, Y, becomes physically
relevant for finite elasticity only. Similar to Secs. V C and
V D, the average velocity possesses two extremal values
with different sign. The low-� maximum �in negative direc-
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FIG. 5. Dimer velocity v and diffusion coefficient D vs driving
frequency �=2� /�, where �=kBT=L=1, �=0.3, l0=0.25, �V
=100, and �=50. Upper graph: The velocity shows two extremal
values of opposite sign. The similarity to v as a function of 1 /kBT is
striking. Lower graph: The maximum of diffusion coincides with
the low-� maximum of v.
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tion� is captured by the weak-coupling approximation,
whereas its high-� counterpart �in positive direction� coin-
cides with the critical coupling strength. Anyway, both ap-
proximations enclose this maximum very tight so that one
can easily do without a precise theoretical prediction at �crit.

Unlike all former results, the maximal velocity in positive
x direction is about six times larger than its negative coun-
terpart. There are several reasons for this: the probability of
reaching a B state �cf. Fig. 1� with its relaxation into negative
direction is diminished because the fast component x2 can
more rigidly pull the slow component x1 over a potential

barrier top. Furthermore, the maximal displacement of A
states is increased whereas that of B states is decreased with
increasing �. Last but not least, with further increasing cou-
pling strength, B states become unstable so that a good
amount of the probability for traveling backward is lost.
Therefore the effect onto the average dimer velocity is by far
larger than it was with all previously varied parameters.

VI. CONCLUDING REMARKS

We have investigated the one-dimensional overdamped
Brownian motion of a dimer whose elastically coupled com-
ponents differ in their friction coefficients and are located in
a flashing sinusoidal potential. Approximations for the aver-
age velocity and diffusion coefficient have been obtained for
wide ranges of parameter values, yielding precise theoretical
predictions as compared to numerical simulations of the
Langevin dynamics. Ratcheting motion has been observed
and explained upon variation in rest length, temperature,
frictional asymmetry, driving frequency, and elasticity. In
each case two parameter values have been found that opti-
mize the velocity, either in positive or in negative direction.
For the two most relevant parameters—temperature and
frequency—the characteristics of the effective diffusion co-
efficient have been obtained.
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FIG. 6. Dimer velocity v vs elasticity �, where �=kBT=L=1,
�=0.3, l0=0.25, and �V=�=100. Weak- and strong-coupling ap-
proximations are in good accordance with simulation data over sev-
eral orders of magnitude of the coupling strength �. Only at critical
coupling, �crit�2000, both approximations fail. In the weak-
coupling limit, the average velocity v converges to infinitely small
negative values, whereas the approximation suggests a small posi-
tive velocity. This is an artifact due to incomplete relaxation of the
dimer, which is not accounted for by our theory.
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